Monday, September 11, 2017

How Quantum Technology Is Making Computers Millions Of Times More Powerful |

When the first digital computer was built in the 1940s, it revolutionized the world of data calculation. When the first programming language was introduced in the 1950s, it transformed digital computers from impractical behemoths to real-world tools. And when the keyboard and mouse were added in the 1960s, it brought computers out of industry facilities and into people's homes. There's a technology that has the potential to change the world in an even bigger way than any of those breakthroughs. Welcome to the future of quantum computing.
Every computer you've ever encountered works on the principles of a Turing machine: they manipulate little particles of information, called bits, that exist as either a 0 or a 1, a system known as binary. The fundamental difference in a quantum computer is that it's not limited to those two options. Their "quantum bits," or qubits, can exist as 0, 1, or a superposition of 0 and 1—that is, both 0 and 1 and all points in between. It's only once you measure them that they "decide" on a value. That's what's so groundbreaking about quantum computing: Conventional computers can only work on one computation at a time; the fastest just have ways of making multiple components work on separate tasks simultaneously. But the magic of superposition gives quantum computers the ability to work on a million computations at once. With that kind of power, just imagine what humanity could accomplish!
But that's not all that makes quantum computing so impressive—there's also the phenomenon of entanglement. Qubits don't exist in a vacuum. Generally, systems of multiple qubits are entangled, so that they each take on the properties of the others. Take an entangled system of two qubits, for
example. Once you measure one qubit, it "chooses" one value. But because of its relationship, or correlation, to the other qubit, that value instantly tells you the value of the other qubit.

No comments:

Post a Comment